7 research outputs found

    Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small (approximately 21 nucleotide) non-coding RNAs that are key post-transcriptional gene regulators in eukaryotic organisms. More than 100 cassava miRNAs have been identified in a conservation analysis and a repertoire of cassava miRNAs have also been characterised by next-generation sequencing (NGS) in recent studies. Here, using NGS, we profiled small non-coding RNAs and mRNA genes in two cassava cultivars and their wild progenitor to identify and characterise miRNAs that are potentially involved in plant growth and starch biosynthesis. RESULTS: Six small RNA and six mRNA libraries from leaves and roots of the two cultivars, KU50 and Arg7, and their wild progenitor, W14, were subjected to NGS. Analysis of the sequencing data revealed 29 conserved miRNA families and 33 new miRNA families. Together, these miRNAs potentially targeted a total of 360 putative target genes. Whereas 16 miRNA families were highly expressed in cultivar leaves, another 13 miRNA families were highly expressed in storage roots of cultivars. Co-expression analysis revealed that the expression level of some targets had negative relationship with their corresponding miRNAs in storage roots and leaves; these targets included MYB33, ARF10, GRF1, RD19, APL2, NF-YA3 and SPL2, which are known to be involved in plant development, starch biosynthesis and response to environmental stimuli. CONCLUSION: The identified miRNAs, target mRNAs and target gene ontology annotation all shed light on the possible functions of miRNAs in Manihot species. The differential expression of miRNAs between cultivars and their wild progenitor, together with our analysis of GO annotation and confirmation of miRNA: target pairs, might provide insight into know the differences between wild progenitor and cultivated cassava. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0355-7) contains supplementary material, which is available to authorized users

    Numerical Simulation of 3D Flow Structure and Turbulence Characteristics near Permeable Spur Dike in Channels with Varying Sinuosities

    No full text
    Owing to the different degrees of bending in rivers in nature, it is difficult to conduct experiments in situ. In this study, the renormalization group (RNG) k-ε turbulence model in ANSYS Fluent was used to analyze the three-dimensional flow structure and turbulence characteristics near a spur dike and to evaluate the variation trend of flow in rivers with different degrees of bending. The results show that in channels with different curvatures, the vortex appears between the spur dikes and is disturbed by the permeable hole, and the backflow area moves downstream. The strength of secondary flow (SSF) fluctuates greatly in the vicinity of the spur dike and the downstream region, and the peak value appears 3.22 m (21.5 times L) away from the inlet of the bend. The SSF increases as the bend curvature increases. The SSF displays similar variation trends in the three kinds of bends. The peak value of normalized turbulent kinetic energy (NTKE) appears 3.14 m away from the entrance of the bend, the NTKE is the largest in the 45° bend and the smallest in the 180° bend, and it decreases only at distances of 3.25–4.19 m away from the entrance of the bend as the bend curvature increases
    corecore